A Practical Guide to
Autodesk Civil 3D® 2019

Rick Ellis

CADapult Press

A CADapult Press Publication
Copyright

Copyright © CADapult Press, Inc. 2018

All rights reserved. No part of this publication may be reproduced in any form, or by any means electronic, mechanical, recording, photocopying, or otherwise, without written permission from the publisher, except for brief quotations used in reviews, or for marketing purposes specific to the promotion of this work.

Although CADapult Press has made every attempt to ensure the accuracy of the contents of this book, the publisher and author make no representations or warranty with respect to accuracy or completeness of the contents in this book, including without limitation warranties of fitness for a particular purpose. The datasets included in this book are for training purposes only.

Autodesk screen shots reprinted with the permission of Autodesk, Inc.

Autodesk, AutoCAD, DWG, the DWG logo, AutoCAD Map 3D, and Civil 3D are registered trademarks or trademarks of Autodesk, Inc., and/or its subsidiaries and/or affiliates in the USA and other countries. All other trademarks are the property of their respective owners.

Published in the United States of America by:
CADapult Press, Inc.
(503) 829-8929
books@cadapult-software.com

Printed and manufactured in the United States of America
About the Author

Rick Ellis has worked with and taught Autodesk Civil 3D, along with Map 3D and other Autodesk products since the mid-90s. He is the Author of several critically acclaimed books on Autodesk Civil 3D, Map 3D and Land Desktop.

Rick continues to use Autodesk Civil 3D on projects in a production environment, in addition to teaching classes to organizations both large and small.

This practical background and approach has made him an award winning speaker at Autodesk University, a member of the national speaker team for the AUGI CAD Camps and a sought after instructor by organizations around the world.

Rick can be reached at: rick@cadapult-software.com

About the Technical Editor

Russell Martin is an independent consultant who has worked with AutoCAD since 1985. He pioneered the position of Staff Geographer, and later served as CAD/GIS Manager at a multi-disciplinary engineering consulting firm. Russell has served as technical editor for many of Cadapult Press training books, and has co-authored and contributed to several other books on CAD, GIS and technical graphics software.

Russell can be reached at: russell@cadapult-software.com

Exercise Data

I would like to thank the City of Springfield, Oregon for providing the data for this book. The dataset provided is for illustration purposes only. While it is based on real world information to add relevance to the exercises, it has been altered and modified to more effectively demonstrate certain features as well as to protect all parties involved. The data should not be used for any project work and may not represent actual places or things. It is prohibited to redistribute this data beyond your personal use as a component of training.
A Practical Guide to Autodesk Civil 3D 2019

Introduction
Congratulations on choosing this course to help you learn how to use Autodesk Civil 3D 2019. The term “practical” is used in the title because this course focuses on what you need to effectively use Autodesk Civil 3D 2019 and does not complicate your learning experience with unnecessary details of every feature in the product. Should you want to pursue aspects of features and functionality in greater detail than provided in this course, you are directed and guided to that information.

Each lesson contains the concepts and principles of each feature to provide you with the background and foundation of knowledge that you need to complete the lesson. You then work through real world exercises to reinforce your understanding and provide you with practice on common tasks that other professionals are performing with Autodesk Civil 3D 2019 in the workplace every day.

You can take the lessons in this course in whatever order is appropriate for your personal needs. If you want to concentrate on specific features, the lesson for those features does not require that you complete prior lessons. With this course organization, you can customize your own individual approach to learning Autodesk Civil 3D.

When you complete this course, you will be armed with the background and knowledge to apply Autodesk Civil 3D to your job tasks, and become more effective and productive in your job.

Course Objectives
The objectives of this course are performance based. In other words, once you have completed the course, you will be able to perform each objective listed. If you are already familiar with Autodesk Civil 3D, you will be able to analyze your existing workflows, and make changes to improve your performance based on the tools and features that you learn and practice in this course.

After completing this course, you will be able to:

- Understand and work with Object Styles.
- Create, manage and apply Label Styles.
- Import and manage Points, and work with Point Groups.
- Create and edit Alignments.
- Define Parcels.
- Create and edit Profiles and Profile Views.
- Create Corridors and extract information from them.
- Sample Sections and plot Section Views.
- Import and leverage GIS Data in your Civil 3D projects.
- Use Queries to manage and share data.
- Layout Pipe Networks and edit them in plan and profile.
- Layout Pressure Networks and edit them in plan and profile.
- Work with the Grading tools.
- Create reports for Civil 3D objects.
- Calculate Volumes.
- Share project data with Data Shortcuts.
Prerequisites
Before starting this course, you should have a basic working knowledge of AutoCAD. A deep understanding of AutoCAD is not required, but you should be able to:

- Pan and Zoom in the AutoCAD drawing screen.
- Describe what layers are in AutoCAD, and change the current layer.
- Create basic CAD geometry, such as lines, polylines and circles.
- Use Object Snaps.
- Describe what blocks are, and how to insert them.
- Perform basic CAD editing functions such as Erase, Copy, and Move.

If you are not familiar with these functions, you can refer to the AutoCAD Help system throughout the course to gain the fundamental skills needed to complete the exercises.

Conventions
The course uses the following icons and formatting to draw your attention to guidelines that increase your effectiveness in Autodesk Civil 3D, or provide deeper insight into a subject.

The magnifying glass indicates that this text provides deeper insights into the subject.

The compass indicates that this text provides guidance that is based on the experience of other users of Autodesk Civil 3D. This guidance is often in the form of how to perform a task more efficiently.
Downloading and Installing the Datasets
In order to perform the exercises in this book, you must download a zip file and install the datasets.

Type the address below into your web browser to load the page where you can download the dataset.
www.cadapult-software.com/data

If you are using a previous version of Civil 3D you can download previous versions of the dataset to use with this book.

Unzip the Files
Unzip the file APG_C3D2019.zip directly to the C drive. The zip file will create the following folder structure:

- A folder called Chapter Drawings is created that contains a drawing that can be used to begin each exercise. This will allow you to jump in at the beginning of any exercise in the book, and do just the specific exercises that you want, if you do not have time to work through the book from cover to cover. The drawings in the Chapter Drawings folder are not necessary and only need to be used if you want to start in the middle of the book, or if you want to overwrite any mistakes that you may have made in previous chapters.

- Two drawing templates called _Practical Guide Training by Style.dwt and _Practical Guide Section.dwt are also available in the template folder.

Exercises
The exercises in this course have been designed to represent common tasks that are performed by civil engineers, surveyors, designers and drafters. The data included in the exercises are typical drawings, point files and other data used by professionals like you. You work with drawings, point files, aerial photos, GIS data, and much more; as you work through a road design project that also includes a sewer extension and detention pond.

Exercises provide higher level process information throughout the exercise tasks. You are given information about not only what to do, but why you are doing it. In most cases, an image is included to help guide you.
Table of Contents

Chapter 1 Autodesk Civil 3D User Interface ...1
 1.1 Lesson: Navigating the Autodesk Civil 3D User Interface2
 1.1.1 Navigating the Autodesk Civil 3D Interface ...11
 1.2 Lesson: Project Overview ..14

Chapter 2 Data Collection and Base Map Preparation ...17
 2.1 Lesson: Importing GIS Data ..18
 2.1.1 Importing ESRI Shapefiles ...21
 2.1.2 Controlling the Display of Polygons ...27
 2.1.3 Viewing GIS Attributes in AutoCAD ...28
 2.1.4 Inserting a Registered Image (Rectified Aerial Photography)28
 2.1.5 Assigning a Coordinate System to the Drawing31
 2.1.6 Adding an Online Map ...33
 2.1.7 Adding the Project Area ...35
 2.2 Lesson: Using Queries to Manage and Share Data ...37
 2.2.1 Attaching Source Drawings ...44
 2.2.2 Defining a Query ...47
 2.2.3 Saving Changes Back To the Source Drawings49
 2.2.4 Defining a Compound Query ..51

Chapter 3 Preliminary Layout ...59
 3.1 Lesson: Creating a Preliminary Existing Ground Surface60
 3.1.1 Creating a Surface ...63
 3.1.2 Adding Surface Data ..65
 3.1.3 Changing the Surface Style to Control Display68
 3.1.4 Managing Drawing Settings ...70
 3.1.5 Using the Object Viewer ...71
 3.2 Lesson: Creating a Preliminary Alignment ...72
 3.2.1 Drafting the Preliminary Alignment Using Transparent Commands74
 3.3 Lesson: Creating Points from an Alignment ...77
 3.3.1 Establishing the Point Settings ..81
 3.3.2 Setting Points on an Alignment ..82
 3.3.3 Creating a Point Group ...84
 3.3.4 Creating a Point Import/Export Format ...85
 3.3.5 Exporting Points to an ASCII File ...88
Chapter 4 Creating a Survey Plan

- **4.1 Lesson: Importing Survey Points**
 - 4.1.1 Creating a Description Key Set
 - 4.1.2 Importing Points from an ASCII File
 - 4.1.3 Confirming the Description Keys Worked Properly
- **4.2 Lesson: Working with Point Groups**
 - 4.2.1 Locking Points and Group Properties
 - 4.2.2 Creating a Point Group for Property Corners
 - 4.2.3 Creating a Point Group for Center Line Points
 - 4.2.4 Creating a Point Group for Breakline Points
 - 4.2.5 Creating a Point Group for Tree Points
- **4.3 Lesson: Controlling Point Display**
 - 4.3.1 Creating Point Styles
 - 4.3.2 Creating Point Label Styles
 - 4.3.3 Controlling Point Display with Point Groups
 - 4.3.4 Controlling the Dragged State
 - 4.3.5 Controlling Point Label Size in Model Space
 - 4.3.6 Controlling Point Group Display Order
- **4.4 Lesson: Drawing Linework Using Transparent Commands**
 - 4.4.1 Drawing Lines by Point Number
 - 4.4.2 Drawing Lines by a Range of Point Numbers
 - 4.4.3 Drawing Lines by Point Object
- **4.5 Lesson: Working with Parcels**
 - 4.5.1 Defining a Parcel from Existing Geometry
 - 4.5.2 Creating a Parcel Area Report
 - 4.5.3 Creating a Parcel Legal Description Report
- **4.6 Lesson: Labeling Linework**
 - 4.6.1 Labeling Parcel Lines
 - 4.6.2 Working with Parcel Segment Labels
 - 4.6.3 Creating a Line Table
 - 4.6.4 Creating a Parcel Area Table
 - 4.6.5 Labeling AutoCAD Objects

Chapter 5 Building a Survey Quality Surface

- **5.1 Lesson: Building Surfaces from Survey Data**
 - 5.1.1 Creating a Point Group to Be Used As Surface Data
 - 5.1.2 Creating the Survey Surface
 - 5.1.3 Adding Point Group Data to a Surface
5.1.4 Creating Breaklines by Point Number ... 169
5.1.5 Creating Breaklines by Point Selection .. 170
5.1.6 Adding Breaklines to the Surface ... 172
5.1.7 Viewing the Surface ... 173

5.2 Lesson: Editing Surfaces .. 174
5.2.1 Editing Point Data ... 177
5.2.2 Editing Breaklines ... 178
5.2.3 Deleting Lines ... 179
5.2.4 Pasting Surfaces .. 181

5.3 Lesson: Surface Analysis .. 183
5.3.1 Displaying Slope Arrows .. 185
5.3.2 Elevation Banding .. 186
5.3.3 Slope Analysis ... 191

5.4 Lesson: Working with Contours .. 195
5.4.1 Displaying a Surface as Contours ... 197
5.4.2 Creating a Surface Style to Display Contours .. 198
5.4.3 Controlling Contour Display .. 201
5.4.4 Labeling Contours .. 202
5.4.5 Moving Contour Labels ... 203
5.4.6 Deleting Contour Labels ... 203
5.4.7 Labeling Only the Major Contours .. 204
5.4.8 Editing Contour Labels .. 205
5.4.9 Controlling Surface Display for Performance .. 208

Chapter 6 Working with Alignments and Parcels ... 209
6.1 Lesson: Creating Alignments ... 210
6.1.1 Default Curve Settings .. 212
6.1.2 Creating Tangents with Curves ... 214

6.2 Lesson: Editing Alignments .. 216
6.2.1 Editing Alignments Graphically ... 218
6.2.2 Editing Alignments in Grid View ... 218

6.3 Lesson: Working with Alignment Labels ... 220
6.3.1 Working with Alignment Station Labels .. 224
6.3.2 Changing the Stationing of an Alignment .. 225
6.3.3 Labeling Station and Offset Values .. 226
6.3.4 Creating Polyline Offsets of an Alignment ... 227
6.3.5 Creating Offset Alignments ... 228
6.4 Lesson: Laying Out Parcels... 229
 6.4.1 Merging Parcels ... 232
 6.4.2 Creating Parcels Manually .. 232
 6.4.3 Creating Parcels with the Slide Line Tool ... 234
 6.4.4 Creating Parcels with the Slide Line Tool Automatically .. 236
 6.4.5 Editing Parcels ... 238
 6.4.6 Deleting Parcels .. 239
 6.4.7 Renumbering Parcels .. 239
6.5 Lesson: Working with Parcel Styles and Labels.. 241
 6.5.1 Controlling Parcel Display .. 244
 6.5.2 Creating Parcel Styles ... 245
 6.5.3 Creating Parcel Area Label Styles ... 249
 6.5.4 Changing the Styles of Multiple Parcels .. 253

7 - Working with Profiles .. 255
 7.1 Lesson: Creating Existing Ground Profiles ... 256
 7.1.1 Sampling and Drawing the Profile .. 259
 7.1.2 Changing the Profile View Style .. 266
 7.1.3 Creating a Profile View Style .. 267
 7.1.4 Creating Additional Profile Views ... 274
 7.2 Lesson: Creating Finished Ground Profiles .. 276
 7.2.1 Constructing the Finished Ground Centerline ... 280
 7.2.2 Editing the Profile Graphically ... 282
 7.2.3 Editing the Profile in Grid View ... 283
 7.2.4 Working with Profile Labels .. 284
 7.2.5 Adding Profile Labels .. 286
 7.2.6 Working with Profile View Bands ... 287
 7.2.7 Adding Profile View Bands ... 288

Chapter 8 Corridor Modeling .. 291
 8.1 Lesson: Working with Assemblies .. 292
 8.1.1 Creating an Assembly .. 294
 8.2 Lesson: Working with Corridors ... 300
 8.2.1 Creating a Corridor ... 303
 8.2.2 Editing a Corridor ... 306
 8.2.3 Creating Corridor Surfaces ... 308
 8.2.4 Viewing and Editing Corridor Sections ... 310
 8.2.5 Exporting Corridor Points .. 311
8.3 Lesson: Working with Sections ... 314
 8.3.1 Creating Sample Lines .. 317
 8.3.2 Creating a Section Group Plot Style ... 319
 8.3.3 Creating Section Views .. 322
 8.3.4 Creating Section Sheets ... 328
 8.3.5 Volume Calculations ... 329
 8.3.6 Creating a Mass Haul Diagram ... 331
 8.3.7 Editing a Corridor to Update Surfaces, Sections, and Volumes ... 334
 8.3.8 Creating a Surface Showing Final Site Conditions ... 334

Chapter 9 Pipes... 337
 9.1 Lesson: Working with Pipe Networks in Plan .. 338
 9.1.1 Laying Out a Pipe Network .. 341
 9.1.2 Editing a Pipe Network in Plan .. 343
 9.2 Lesson: Working with Pipe Networks in Profile ... 344
 9.2.1 Adding a Pipe Network to a Profile ... 346
 9.2.2 Editing a Pipe Network in Profile .. 347
 9.2.3 Labeling a Pipe Network in Profile .. 348
 9.3 Lesson: Working with Pressure Networks in Plan .. 349
 9.3.1 Laying Out a Pressure Network ... 351
 9.3.2 Adding a Lateral to a Pressure Network ... 354
 9.4 Lesson: Working with Pressure Networks in Profile ... 356
 9.4.1 Creating a Profile View with a Pressure Network ... 359
 9.4.2 Editing a Pressure Network in Profile .. 362

Chapter 10 Grading ... 365
 10.1 Lesson: Working with Grading Groups ... 366
 10.1.1 Creating a Grading Group ... 369
 10.1.2 Creating a Grading Object .. 371
 10.1.3 Creating a Grading Infill ... 376
 10.1.4 Reviewing Grading Group Properties .. 377
 10.1.5 Calculating Stage Storage ... 379
 10.2 Lesson: Volume Calculations .. 382
 10.2.1 Creating a Grid Volume Surface ... 385
 10.2.2 Creating a TIN Volume Surface ... 388
 10.2.3 Displaying Cut and Fill with Surface Styles ... 389
 10.2.4 Creating a Legend for Cut and Fill Depths ... 391
Chapter 11 Data Shortcuts ... 393

11.1 Lesson: Sharing Project Data with Data Shortcuts ... 394
 11.1.1 Setting the Working Folder ... 399
 11.1.2 Creating a Data Shortcut Project .. 400
 11.1.3 Creating Data Shortcuts .. 401
 11.1.4 Creating Data Shortcut References .. 402
5 - Building a Survey Quality Surface

In this chapter, you will use points and breaklines from the survey data to create a survey quality existing ground surface. You will learn ways to leverage the use of Point Groups to efficiently build and edit a Surface by editing the source data and also editing the Surface itself. You will also explore various ways of editing and analyzing surfaces including the use of the preliminary surface to add extra data beyond the limits of the survey. Finally, you will learn to display and label contours working with Surface Styles and Contour Label Styles.

Creating an accurate Surface is one of the most important parts of any Civil 3D project. The Profiles, Sections, Corridor Models, and Grading as well as Volume Calculations that you create later in the project are all based on this Surface. This chapter will explore ways to create an existing ground surface from survey data as well as ways to check, display, analyze, and edit the surface.

Lesson: Building Surfaces from Survey Data
In this lesson, you will learn to build a surface from different types of surface data.

Lesson: Editing Surfaces
In this lesson, you will learn the concepts and process of editing surfaces by editing the source surface data and by editing the TIN itself.

Lesson: Surface Analysis
In this lesson, you will learn different ways to preform surface analysis that include elevation banding, slope analysis, and direction arrows.

Lesson: Working with Contours
In this lesson, you will learn to display and label contours by working with surface styles and surface label styles.
5.1 Lesson: Building Surfaces from Survey Data

Introduction
Any time you build a surface the most important step is to understand what data you have available to work with. In this chapter, you will work with points that will be managed with a Point Group and breaklines that you will create based on some of those same survey points.

Key Concepts
Concepts and key terms covered in this lesson are:

- Surface
- Points
- Point Group
- Breaklines
- Surface Styles

Objectives
After completing this lesson, you will be able to:

- Create a Point Group for use building a Surface
- List the types of data that can be used to build a Surface.
- Describe what a breakline is.
- Draw and define breaklines.
Types of Surface Data
Surfaces can be built from a combination of many different types of data:

- Boundaries
- Breaklines
- Contours
- DEM files (Digital Elevation Models)
- Drawing Objects
- Point Files
- Point Groups
- Point Survey Queries
- Figure Survey Queries

Boundaries
A boundary is a closed polygon that limits the triangulation of a surface.

Boundary Types:
- Outer
 - Defines the outer boundary of a surface
 - Triangles outside of this boundary are removed
- Show
 - Displays the triangles inside the boundary
 - Can be used inside of a Hide boundary
- Hide
 - Removes triangles inside of the boundary
 - Creates a hole in the surface
 - Can be used for building footprints to keep contours from crossing through them
- Data Clip
 - Keeps data outside this boundary from being added to the surface
 - Must be added before other surface data or moved up in priority in the surface definition
 - Useful for limiting the size of large datasets
Non-destructive breakline boundaries
Outer, Show and Hide boundaries have the option to be created as non-destructive breaklines. When this option is enabled, it trims the TIN lines at the boundary. When it is not used, it erases all the TIN lines that touch the boundary.

This can be a good option if you have good surface data on each side of the boundary as it will cut a clean and straight boundary through the surface. However, if this option is used on an outer boundary where all of the surface data is inside the boundary and the only triangle touching it are long and inaccurate, then you may be left with short triangles along the edge that are still at the wrong slope.

Breaklines
Breaklines define grade breaks in a surface. They are lines in a TIN that represent a distinct interruption in the slope of a surface; like road centerlines, curbs, gutters, streams, tops and toes of slopes, or any other grade break. No triangle in a TIN may cross a breakline (in other words, breaklines are enforced as triangle edges).

Types of breaklines:
- **Standard**
 - Defined by selecting 3D polylines, 3D lines, feature lines, or splines
- **Proximity**
 - Defined by selecting a 2D polyline, feature line or spline
 - The vertices of the breakline are snapped to the nearest point in the TIN, or closest proximity
 - Accuracy is dependent on how close the vertices of the proximity breakline are to the points in the TIN
 - Can be very accurate and efficient if you have drawn the selected object from point to point
- **Wall**
 - Defined by selecting 3D polylines, 3D lines, feature lines, splines or by selecting points.
 - You enter the elevation on each side of the wall at each vertex
- **From file**
 - Can be imported from an ASCII FLT file
- **Non-destructive**
 - Break the triangles in the TIN without changing the slope of the lines
Contours
Contour data in the form of 2D polylines can be added to your surface.

Weeding factors can help you skip over extra, unnecessary vertices when the data is added to the surface. While supplementing factors will allow you to sample extra points off long contours with minimal vertices.

Since by its nature, contour data tends to create flat triangles that do not accurately reflect the surface, there are several options to minimize those flat triangles. In most cases it is a best practice to enable all four options to minimize flat areas when adding contour data to a surface.

DEM Files
DEM files (Digital Elevation Models) are grid based surfaces. This is a format that is used by many different Civil, Survey, and GIS programs.

DEM files are a format that is commonly used by the USGS and there is a tremendous amount of data that is available online for free in this format.

Drawing Objects
AutoCAD object that have elevations can be used to build a surface. These objects include:

- Points
- Lines
- Blocks
- Text
- 3D Faces
- Polyface
Chapter: Building a Survey Quality Surface

Point Files
ASCII point files can be imported directly into the surface. This is a good option for large datasets or points that you do not need in the drawing for anything other than building a surface.

Point Groups
Point groups can be used to add a specific selection set of points to a surface. It may be common that some of the points in your drawing are not related to a surface. For example, you would not want to include a point representing the invert of a manhole in the surface. A point group consisting of only surface related points is an efficient way to add only the appropriate points to the surface.

Point Survey Queries
Point Survey Queries are a dynamic reference to a selection of survey points that are included in a survey database. If the points in the survey database are updated, the surface will be marked as out of date and will use the updated values when it is rebuilt.

Figure Survey Queries
Figure Survey Queries are a dynamic reference to a selection of survey figures that are included in a survey database. If the figures in the survey database are updated, the surface will be marked as out of date and will use the updated values when it is rebuilt.

Exercises: Build a Surface from Survey Data
In these exercises, you create a new surface from point group data. You will draw breaklines from survey points and add them to the surface. Then you will view the surface in the Object Viewer to examine it in 3D from different angles.

You do the following:

- Create a Point Group of surface related points.
- Create a Surface.
- Draw Breaklines.
- Add Breaklines to the Surface.
- View the Surface in 3D using the Object Viewer.
5.1.1 Creating a Point Group to Be Used As Surface Data

Before you create the surface you need to create a *Point Group* that will be used to select only the points that you want to use for the surface data. Points that should not be included in the surface should not be included in the point group. Points for utility potholes or points that are part of the project for horizontal control and do not have accurate surface elevations are examples of points that should not be included in this group.

1. Continue working in the drawing *Design.dwg*.

This drawing contains the *Points, Alignment, Parcels, and Surface* from the previous chapters. Currently only the parcel lines and labels are displayed.

2. On the *Prospector* tab of the *Toolspace*, right-click on *Point Groups* and select ⇒ *New*.

3. Enter *Topo* for the *Name*.

4. Select the *Raw Desc Matching* tab in the *Point Group Properties dialog box*.

5. Select the description keys *AEC, DT, DWYRK, DWYAC, GND, LP, TOE, and TOP*.

6. Click «OK>> to create the *Point Group*.
5.1.2 Creating the Survey Surface

1. On the Prospector tab of the Toolspace, right-click on Surfaces and select Create Surface.

2. Confirm that TIN surface is selected as Type.

3. Enter Survey for the Name.

4. Set the Style to Border & Contours.

5. Confirm the Surface layer is set to C-TOPO-Survey.

 This layer name that includes the surface name as a suffix was setup in an earlier exercise through the Drawing Settings command.

6. Click <<OK>> to close the Create Surface dialog box and create the surface.

At this time the surface has not been given any data so it is not displayed. However, it has been created and you will see it in the Prospector. This is where you will access the surface definition commands and add data to the surface.

5.1.3 Adding Point Group Data to a Surface

Point information contained in a Point Group can be added to a Surface through the Prospector. Once the Point Group is added the Surface is automatically rebuilt to incorporate and display the new data.

1. On the Prospector tab of the Toolspace, expand Surfaces.

2. Expand the Surface Survey.

3. Expand the Definition node under Survey.

4. Right-click on Point Groups under Definition and select Add.

5. Select the Point Group Topo.

6. Click <<OK>> to add the point group data to the surface.
The surface is built with the point group data and displays 5 foot contours colored brown and green with a yellow border. This display is controlled by the surface style you selected when you created the surface. If the surface is not visible turn on and thaw the layer C-TOPO-Survey.

5.1.4 Creating Breaklines by Point Number

Civil 3D does not use special commands for drawing and defining breaklines the way that Land Desktop and many other programs do. Instead, you draw the breaklines with standard AutoCAD commands, like the 3D Polyline command, and then define these objects as breaklines after they have been drawn.

1. Create a new Layer named Breaklines-Survey and set it Current.

2. Thaw the layers PNTS-AEC, PNTS-BREAK, and PNTS-DRIVEWAY.

3. Freeze the layers C-ANNO, C-PROP, C-PROP-LINE, C-PROP-TABL, EX-WETLAND-LINE, and PNTS-WTLND.

The drawing will now display the surface as contours and points that you will use for breaklines. You may need to Regen to clean up the display.

4. Enter 3P at the command line to start the 3D Polyline command.

5. Enter 'PN to change the prompt to Point Number.

Alternatively, you can also select the Point Number button from the Transparent Commands toolbar.

6. At the command line enter: 1408-1447 and [Enter] to draw the line.

7. [Esc] to end the Point Number prompt.

8. [Enter] to end the line.

9. Enter 3P at the command line to start the 3D Polyline command.
10. Use the points in the following list of points to draw the breaklines the same way that you drew the previous line. Be sure to use the **Point Number** transparent command to change the prompt to Point Number and to end the command completely after drawing each line. Also be sure to `[Enter]` after each non-sequential point number as shown below in the list.

Point Numbers
- 1448-1486
- 1008-1021
- 1191-1209
- 1226-1257
- 1258-1278
- 1281-1324
- 1295 [Enter] 1661-1710
- 1622-1660 [Enter] 1294
- 1286 [Enter] 1348-1398 [Enter] 1287
- 1022-1074
- 1075-1105
- 1155-1158
- 1159-1160
- 1153-1154
- 1143-1151
- 1130-1142
- 1121-1129

The new **3D Polylines** will look like the graphic below. However, they have not yet been added to the surface as breaklines.

![3D Polylines](image)

5.1.5 Creating Breaklines by Point Selection

1. On the **Prospector** tab of the **Toolspace**, select the **Point Group Breaklines**.

This will display a list of all the points used in the surface in the preview window at the bottom of the **Prospector**, if the **Prospector** is docked. If the **Prospector** is not docked it will display on the side.

2. Find point number **1110** in the preview window.
3. Right-click on point 1110 and select **Zoom to**. You may want to zoom out some to see the surrounding points.

4. Enter **3P** at the command line to start the **3D Polyline** command.

5. Enter **'PO** to change the prompt to **Point Object**.

Alternatively, you can also select the **Point Object** button from the **Transparent Commands** toolbar.

6. Pick point 1110 from the screen.

7. Then pick points 1109, 1108, 1107, and 1106 to draw a breakline between the TOP points toward the northeast corner of the site.

When using the **Point Object** transparent command to draw lines between point objects you will not see the rubber band line that you normally see with the line command.

8. **[Enter]** to end the **Point Object** prompt.

9. **[Enter]** again to end the line.

10. Starting at point 1116, define a second breakline along the bottom of the ditch using the **3D Polyline** command with the **'PO** transparent command and points 1116, 1117, 1118, 1119, and 1120.

11. **[Enter]** to end the Point Object prompt.

12. **[Enter]** again to end the line.

13. Starting at point 1111, define a third breakline along the bank of the ditch using the **3D Polyline** command with the **'PO** transparent command and points 1111, 1112, 1113, 1114, and 1115.

14. **[Enter]** to end the Point Object prompt.

15. **[Enter]** again to end the line.

16. Save the drawing.

The three new **3D Polylines** will look like the graphic below. However, they have not yet been added to the surface as breaklines.
5.1.6 Adding Breaklines to the Surface

2. Pick one of the breaklines and one of the contours from the surface to isolate the **Breaklines-Survey** and **C-TOPO-Survey** layers.

3. Confirm that the **Definition** under the **Surface Survey** is expanded on the **Prospector** tab of the **Toolspace**.

4. Right-click on **Breaklines** under the **Definition** and select ⇒ **Add**.

5. Enter a **Description** for the breakline set of **Collected in Field**.

6. Confirm that the **Type** is set to **Standard**.

You will not use any **Weeding or Supplementing factors** in this exercise. These options allow you to remove or add vertices to breaklines respectively. These are useful options if you have breaklines that have been over digitized and may have thousands of extra vertices very close together or if you need to add vertices to a breakline that has long distances between vertices.

7. Click <<OK>>.

8. Select the **Breaklines** with a crossing window.

9. **[Enter]** to add the breaklines to the surface.

The surface is now updated to include the new breakline data.

10. Select Ribbon: Home ⇒ Layers ⇒ Unisolate to restore the previous layer state.

11. Save the drawing.
5.1.7 Viewing the Surface

The Object Viewer is a separate window that will allow you to view a selected object or objects in 3D and rotate them in real-time.

1. Pick one of the contours to highlight the entire surface.

2. Right-click and select **Object Viewer**.

3. In the **Object Viewer**, click and drag while holding down the left mouse button to rotate the surface in 3D.

Once you rotate to a 3D view the contours will change to 3D faces. This is controlled by the surface object style.

4. If the surface is not shaded right-click and select **Visual Styles ⇒ Shades of Gray**.

5. Continue to rotate the surface to examine it from different angles. You will notice a large hole, or spike, in the surface.

6. When you are finished viewing the surface close the object viewer window to return to the drawing editor. You should also be able to identify this hole by looking at the contours in plan view.

In the next lesson, you will learn to edit the surface to fix this and other errors.
Index

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page Numbers</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alignment</td>
<td>73, 211</td>
<td>Labeling Parcel Segments 143</td>
</tr>
<tr>
<td>Alignment Editing</td>
<td>217</td>
<td>Layout Profiles 257, 277</td>
</tr>
<tr>
<td>Alignment Label Sets</td>
<td>221</td>
<td>Legal Description 136</td>
</tr>
<tr>
<td>alignment label styles</td>
<td>221</td>
<td>Location Queries 40</td>
</tr>
<tr>
<td>Alignment Layout</td>
<td>211</td>
<td>Locking Point Groups 99</td>
</tr>
<tr>
<td>appurtenances</td>
<td>350</td>
<td>Locking Points 99</td>
</tr>
<tr>
<td>ASCII File</td>
<td>92</td>
<td>Map Explorer 7</td>
</tr>
<tr>
<td>Assemblies</td>
<td>293</td>
<td>Map Import 19, 20</td>
</tr>
<tr>
<td>Baselines</td>
<td>301</td>
<td>Mass Haul Diagrams 316</td>
</tr>
<tr>
<td>Boundaries</td>
<td>163</td>
<td>Meets and Bounds 136</td>
</tr>
<tr>
<td>Breaklines</td>
<td>164</td>
<td>Multiple Parcel Properties 243</td>
</tr>
<tr>
<td>Capture Area</td>
<td>34</td>
<td>Network Parts List 339, 350</td>
</tr>
<tr>
<td>Command Line</td>
<td>9</td>
<td>Object Data 20</td>
</tr>
<tr>
<td>Compound Queries</td>
<td>42</td>
<td>Offset Alignments 223</td>
</tr>
<tr>
<td>Contextual Ribbons</td>
<td>3</td>
<td>Online Map 33</td>
</tr>
<tr>
<td>Contours</td>
<td>165, 196</td>
<td>Parcel Area Label Styles 242</td>
</tr>
<tr>
<td>Coordinate system</td>
<td>31</td>
<td>Parcel Area Labels 136</td>
</tr>
<tr>
<td>Coordinate System</td>
<td>19</td>
<td>Parcel Editing 230</td>
</tr>
<tr>
<td>Corridor</td>
<td>301</td>
<td>Parcel Layout Tools 231</td>
</tr>
<tr>
<td>Corridor Surfaces</td>
<td>302</td>
<td>Parcel Reports 136</td>
</tr>
<tr>
<td>Cut and Fill Depths</td>
<td>384</td>
<td>Parcel Segment Label Styles 243</td>
</tr>
<tr>
<td>Data Shortcuts</td>
<td>395</td>
<td>Parcel Styles 242</td>
</tr>
<tr>
<td>Data Shortcuts Project Folder</td>
<td>397</td>
<td>Parcels 135, 230</td>
</tr>
<tr>
<td>Delete PI</td>
<td>217</td>
<td>Paste Surface 175</td>
</tr>
<tr>
<td>DEM Files</td>
<td>165</td>
<td>Pipe Network Layout Tools 340, 351</td>
</tr>
<tr>
<td>Description Keys</td>
<td>91</td>
<td>Pipe Network Profiles - Projected 345, 358</td>
</tr>
<tr>
<td>Display Manager</td>
<td>7</td>
<td>Pipe Networks 339, 350</td>
</tr>
<tr>
<td>Drafting Settings</td>
<td>9</td>
<td>Pipe Networks in Profile 345, 357</td>
</tr>
<tr>
<td>Editing Surfaces</td>
<td>175</td>
<td>pipes 339, 350</td>
</tr>
<tr>
<td>Elevation Banding</td>
<td>184</td>
<td>Point 78</td>
</tr>
<tr>
<td>External References</td>
<td>395</td>
<td>Point Files 166</td>
</tr>
<tr>
<td>fittings</td>
<td>350</td>
<td>Point Group 79</td>
</tr>
<tr>
<td>Frequency</td>
<td>302</td>
<td>Point Group Display Order 109</td>
</tr>
<tr>
<td>GIS Data</td>
<td>19</td>
<td>Point Groups 99, 166</td>
</tr>
<tr>
<td>Grading Criteria</td>
<td>367</td>
<td>Point Import/Export formats 80</td>
</tr>
<tr>
<td>Grading Groups</td>
<td>367</td>
<td>Point Label Style 78</td>
</tr>
<tr>
<td>grading objects</td>
<td>367</td>
<td>Point Label Styles 108</td>
</tr>
<tr>
<td>Grading Tools</td>
<td>368</td>
<td>Point Settings 79</td>
</tr>
<tr>
<td>Grid Volume Surfaces</td>
<td>383</td>
<td>Point Style 78</td>
</tr>
<tr>
<td>Import Attributes</td>
<td>19</td>
<td>Point Styles 107</td>
</tr>
<tr>
<td>Import Coordinate Systems</td>
<td>19</td>
<td>Pressure Network Layout 351</td>
</tr>
<tr>
<td>Import Geometry</td>
<td>19</td>
<td>Pressure Network Parts List 350</td>
</tr>
<tr>
<td>Import Interface</td>
<td>20</td>
<td>Pressure Networks 350</td>
</tr>
<tr>
<td>Import Spatial Filters</td>
<td>19</td>
<td>pressure pipes 350</td>
</tr>
<tr>
<td>Importing Points</td>
<td>92</td>
<td>Profile Editing 277</td>
</tr>
<tr>
<td>Insert PI</td>
<td>217</td>
<td>Profile Label Sets 278</td>
</tr>
<tr>
<td>Inverse</td>
<td>136</td>
<td>profile label styles 278</td>
</tr>
<tr>
<td>Labeling AutoCAD Objects</td>
<td>144</td>
<td>Profile Layout Tools 277</td>
</tr>
<tr>
<td>Labeling Contours</td>
<td>196</td>
<td>Profile View Bands 279</td>
</tr>
<tr>
<td>Topic</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>Profile View Styles</td>
<td>258</td>
<td></td>
</tr>
<tr>
<td>Profile Views</td>
<td>258</td>
<td></td>
</tr>
<tr>
<td>Profiles</td>
<td>257</td>
<td></td>
</tr>
<tr>
<td>Property Queries</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>Query</td>
<td>38, 39</td>
<td></td>
</tr>
<tr>
<td>Query Tools</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Regions</td>
<td>301</td>
<td></td>
</tr>
<tr>
<td>Ribbon</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Sample Line Groups</td>
<td>315</td>
<td></td>
</tr>
<tr>
<td>Sample Lines</td>
<td>315</td>
<td></td>
</tr>
<tr>
<td>Saved Queries</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>Section Based Volumes</td>
<td>316</td>
<td></td>
</tr>
<tr>
<td>Section View Styles</td>
<td>316</td>
<td></td>
</tr>
<tr>
<td>Section Views</td>
<td>315</td>
<td></td>
</tr>
<tr>
<td>Sites</td>
<td>135</td>
<td></td>
</tr>
<tr>
<td>Stage Storage</td>
<td>379</td>
<td></td>
</tr>
<tr>
<td>Station and Offset Labels</td>
<td>222</td>
<td></td>
</tr>
<tr>
<td>Stationing</td>
<td>222</td>
<td></td>
</tr>
<tr>
<td>structures</td>
<td>339, 350</td>
<td></td>
</tr>
<tr>
<td>Subassemblies</td>
<td>293</td>
<td></td>
</tr>
<tr>
<td>Surface</td>
<td>61</td>
<td></td>
</tr>
<tr>
<td>Surface Analysis</td>
<td>184</td>
<td></td>
</tr>
<tr>
<td>Surface Data</td>
<td>163</td>
<td></td>
</tr>
<tr>
<td>Surface Profiles</td>
<td>257</td>
<td></td>
</tr>
<tr>
<td>Surface Style</td>
<td>62</td>
<td></td>
</tr>
<tr>
<td>Surface Styles</td>
<td>196</td>
<td></td>
</tr>
<tr>
<td>Surveyors Certificate</td>
<td>136</td>
<td></td>
</tr>
<tr>
<td>Tables</td>
<td>144</td>
<td></td>
</tr>
<tr>
<td>Targets</td>
<td>143</td>
<td></td>
</tr>
<tr>
<td>Task Pane</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Task-Based Ribbon</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>TIN Volume Surfaces</td>
<td>384</td>
<td></td>
</tr>
<tr>
<td>Tool-Based Ribbon</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Transparent commands</td>
<td>73</td>
<td></td>
</tr>
<tr>
<td>Transparent Commands</td>
<td>128</td>
<td></td>
</tr>
<tr>
<td>User Interface</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Working Folder</td>
<td>396</td>
<td></td>
</tr>
<tr>
<td>Workspaces</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>
Copyright

Copyright © CADapult Press, Inc. 2018

All rights reserved. No part of this publication may be reproduced in any form, or by any means electronic, mechanical, recording, photocopying, or otherwise, without written permission from the publisher, except for brief quotations used in reviews, or for marketing purposes specific to the promotion of this work.

ISBN: 978-1-934865-37-8

Although CADapult Press has made every attempt to ensure the accuracy of the contents of this book, the publisher and author make no representations or warranty with respect to accuracy or completeness of the contents in this book, including without limitation warranties of fitness for a particular purpose. The datasets included in this book are for training purposes only.

Autodesk screen shots reprinted with the permission of Autodesk, Inc.

Autodesk, AutoCAD, DWG, the DWG logo, Civil 3D and AutoCAD Map 3D are registered trademarks or trademarks of Autodesk, Inc., and/or its subsidiaries and/or affiliates in the USA and other countries. All other trademarks are the property of their respective owners.

Published in the United States of America by:
CADapult Press
(503) 829-8929
books@cadapult-software.com

Printed and manufactured in the United States of America
About the Authors

Rick Ellis has worked with and taught Autodesk Civil 3D, along with Map 3D and other Autodesk products since the mid-90s. He is the Author of several critically acclaimed books on Autodesk Civil 3D, Map 3D and Land Desktop.

Rick continues to use Autodesk Civil 3D on projects in a production environment, in addition to teaching classes to organizations both large and small.

This practical background and approach has made him an award winning speaker at Autodesk University, a member of the national speaker team for the AUGI CAD Camps and a sought after instructor by organizations around the world.

Rick can be reached at: rick@cadapult-software.com

Russell Martin is an independent consultant who has worked with CAD, GIS and cartographic design tools since 1985. He has taught AutoCAD and AutoCAD Map 3D in small classrooms and at large events such as Autodesk University. Russell has co-authored several books on AutoCAD Map 3D, and has served as technical editor of many other books on CAD, computer graphics, Land Desktop and Civil 3D.

Russell also performs design, production mapping and GIS analysis services for a diverse client base, both public and private. He uses AutoCAD, Map 3D and Civil 3D tools daily, to produce maps and graphics which clearly communicate complex quantitative data.

Russell can be reached at: russell.p.martin@gmail.com

Exercise Data

CADapult Press would like to thank the City of Springfield, Oregon for providing the data for this book. The dataset provided is for illustration purposes only. While it is based on real world information to add relevance to the exercises, it has been altered and modified to more effectively demonstrate certain features as well as to protect all parties involved. The data should not be used for any project work and may not represent actual places or things. It is prohibited to redistribute this data beyond your personal use as a component of training.
A Practical Guide to GIS in Autodesk Civil 3D 2019

Introduction
Congratulations on choosing this course to help you learn how to use GIS in Autodesk Civil 3D 2019. The term “practical” is used in the title because this course focuses on what you need to effectively use the GIS tools in Autodesk Civil 3D 2019, and does not complicate your learning experience with unnecessary details of every feature in the product. Should you want to pursue aspects of features and functionality in greater detail than provided in this course, you are directed and guided to that information.

Each lesson contains the concepts and principles of each feature to provide you with the background and foundation of knowledge that you need to complete the lesson. You then work through real world exercises to reinforce your understanding and provide you with practice on common tasks that other professionals are performing with Autodesk Civil 3D 2019 in the workplace every day.

You can take the lessons in this course in whatever order is appropriate for your personal needs. If you want to concentrate on specific features, the lesson for those features does not require that you complete prior lessons. With this course organization, you can customize your own individual approach to learning Autodesk Civil 3D.

When you complete this course, you will be armed with the background and knowledge to apply Autodesk Civil 3D to your job tasks, and become more effective and productive in your job.

Course Objectives
The objectives of this course are performance based. In other words, once you have completed the course, you will be able to perform each objective listed. If you are already familiar with Autodesk Civil 3D, you will be able to analyze your existing workflows, and make changes to improve your performance based on the tools and features that you learn and practice in this course.

After completing this course, you will be able to:

- Work with coordinate systems
- Clean drawings with common geometry errors
- Insert rectified raster images
- Work with a variety of attribute data
- Apply object classification to your mapping system
- Import GIS data from a variety of sources
- Create surfaces and pipe networks directly from GIS data
- Export geometry and attribute data to other GIS formats
- Export Civil 3D objects to other GIS formats
- Connect directly to GIS data
- Connect to raster surface data
- Attach and query source drawings
- Save changes to attached source drawings
- Extract data for reports and quantity takeoffs
- Create, manage and analyze topologies
- Utilize Dynamic Viewport Tools
- Produce sophisticated map books
Prerequisites
Before starting this course, you should have a basic working knowledge of AutoCAD. A deep understanding of AutoCAD is not required, but you should be able to:

- Pan and Zoom in the AutoCAD drawing screen.
- Describe what layers are in AutoCAD, and change the current layer.
- Create basic CAD geometry, such as lines, polylines and circles.
- Use Object Snaps.
- Describe what blocks are, and how to insert them.
- Perform basic CAD editing functions such as Erase, Copy, and Move.

If you are not familiar with these functions, you can refer to the AutoCAD Help system throughout the course to gain the fundamental skills needed to complete the exercises.

Conventions
The course uses the following icons and formatting to draw your attention to guidelines that increase your effectiveness in Autodesk Civil 3D, or provide deeper insight into a subject.

🔍 The magnifying glass indicates that this text provides deeper insights into the subject.

🧭 The compass indicates that this text provides guidance that is based on the experience of other users of AutoCAD Civil 3D. This guidance is often in the form of how to perform a task more efficiently.

⚠️ The warning indicates that a specific exercise might not function properly on 64 bit operating systems.

⚙️ The workspace icon indicates the Workspace that will be used in the upcoming exercise.
Downloading and Installing the Datasets

In order to perform the exercises in this book, you must download a zip file and install the datasets.

Type the address below into your web browser to load the page where you can download the dataset.
www.cadapult-software.com/data

If you are using a previous version of Civil 3D you can download a previous version of the dataset to use with this book.

Unzip the Files

Unzip the file APG_GIS2019.zip directly to the C drive. The zip file will create the following folder structure:

C:\A Practical Guide\GIS in Civil 3D 2019\Chapter Number\Files for Exercises

Exercises

The exercises in this course have been carefully chosen and designed to represent common tasks that are performed by mapping and GIS professionals. The data included in the exercises are typical drawings and maps used by local governments and municipalities. You work with road networks, parcel maps, sewer collection systems, water distribution systems, aerial photos, raster surfaces, and much more.

Exercises provide higher level process information throughout the exercise tasks. You are given information about not only what to do, but why you are doing it. In most cases, an image is included to help guide you.

64 Bit Database Drivers

On 64 bit systems, exercises that require a connection to an ODBC database need to have the proper drivers from Microsoft installed. If your system does not have these installed, you can download them from Microsoft. Go to [http://www.microsoft.com] and search for Microsoft Access Database Engine.

Be sure to download the 64 bit version of the Microsoft Access Database Engine. You do not need to have Microsoft Office installed to install these drivers or to complete the exercise in this book. However, if you have Microsoft Office installed it will need to be the 64 bit version of Office for the 64 bit drivers to install.
Table of Contents

Chapter 1 Autodesk Civil 3D User Interface for GIS ..1
 1.1 Exploring the Civil 3D Tools for GIS ...2
 1.1.1 Navigating the Civil 3D Interface for GIS ..10

Chapter 2 Creating Map Geometry ...13
 2.1 Lesson: Establishing Coordinate Systems in Drawings ...14
 2.1.1 Assigning a Coordinate System ..19
 2.1.2 Coordinate Tracking ..20
 2.1.3 Digitizing Points ..21
 2.2 Lesson: Creating and Inquiring COGO Data ..23
 2.2.1 Drawing with Transparent Commands ...26
 2.2.2 Line and Arc Information ..28
 2.2.3 Angle Information ..29
 2.2.4 Continuous Distance ...29
 2.2.5 Continuous Distance from a Base Point ..30
 2.2.6 Add Distance ..31
 2.2.7 List Slope ...31
 2.3 Lesson: Using Drawing Cleanup ...33
 2.3.1 Break Crossing Objects ..38
 2.3.2 Extend Undershoots ...42
 2.3.3 Delete Duplicates ..43
 2.3.4 Zero Length Objects ...45
 2.3.5 Dissolve Pseudo Nodes ...46
 2.3.6 Simplifying Objects ...47

Chapter 3 Working with Attribute Data ...51
 3.1 Lesson: Attribute Data Concepts ...52
 3.2 Lesson: Defining Object Data Tables ...57
 3.2.1 Creating Object Data Tables ..61
 3.3 Lesson: Attaching Object Data to Objects ..66
 3.3.1 Attaching Object Data to Objects ...70
 3.3.2 Attaching Object Data While Digitizing ...72
 3.4 Lesson: Editing Object Data and Object Data Tables ..75
 3.4.1 Editing Object Data ...80
 3.4.2 Editing Object Data Tables ...82
3.5 Lesson: Attaching External Databases .. 84
 3.5.1 Attaching External Databases .. 88
3.6 Lesson: Working with Data View .. 89
 3.6.1 Navigating in the Data View Table .. 92
 3.6.2 Applying SQL Filters ... 93
3.7 Lesson: Defining a Link Template and Generating Links ... 98
 3.7.1 Defining a Link Template .. 104
 3.7.2 Attaching Database Data to Existing Objects ... 105
 3.7.3 Attaching Database Data While Digitizing ... 107
 3.7.4 Generating Links to Existing Blocks .. 109
 3.7.5 Highlighting objects by selecting records .. 110
 3.7.6 Highlighting table records by selecting objects ... 112
 3.7.7 Using Spatial Filters ... 113
3.8 Lesson: Establishing the Dynamic Annotation Environment .. 115
 3.8.1 Defining an Annotation Template ... 119
3.9 Lesson: Inserting and Managing Dynamic Annotation ... 122
 3.9.1 Annotating Objects ... 125
 3.9.2 Annotating Multiple Values ... 126
 3.9.3 Updating Annotation .. 129
 3.9.4 Rotating Annotation to Align with Objects ... 130
 3.9.5 Adding Text to Annotation Expressions ... 132
 3.9.6 Adding the Inch Symbol (") ... 133
 3.9.7 Adding Length to the Annotation Template ... 134
 3.9.8 Controlling Precision ... 136

Chapter 4 Object Classification ... 139
4.1 Lesson: Creating Object Classification Definition Files and Object Classes ... 140
 4.1.1 Log in as SuperUser .. 145
 4.1.2 Create a New Definition File ... 146
 4.1.3 Define an Object Class ... 147
4.2 Lesson: Classifying Existing Objects and Validating Standards ... 152
 4.2.1 Classifying Existing Objects .. 156
 4.2.2 Validating Classified Objects .. 157
4.3 Lesson: Creating New Classified Objects ... 158
 4.3.1 Creating New Classified Objects ... 160
Chapter 8 Stylizing Features ... 263

8.1 Lesson: Stylizing Lines, Points, and Polygons .. 264
 8.1.1 Stylizing Polygon Features .. 269
 8.1.2 Stylizing Line Features ... 273
 8.1.3 Stylizing and Labeling Point Features .. 274

8.2 Lesson: Stylizing Raster Surfaces .. 277
 8.2.1 Stylizing Raster Features .. 282
 8.2.2 Creating Contours from a Raster Surface .. 284

8.3 Lesson: Creating Scale Dependent Styles .. 285
 8.3.1 Working with Scale Dependent Styles ... 289

8.4 Lesson: Applying Themes to Feature Layers .. 292
 8.4.1 Thematic Mapping of Linear Objects with Object Data 296
 8.4.2 Thematic Mapping of Polygon Features .. 299

Chapter 9 Working with Features .. 301

9.1 Lesson: Creating Feature Filters and Feature Queries .. 302
 9.1.1 Preforming a Filter to Select ... 306
 9.1.2 Preforming a Feature Query ... 307

9.2 Lesson: Editing Feature Geometry and Attributes .. 309
 9.2.1 Editing Features ... 314

9.3 Lesson: Creating Joins .. 318
 9.3.1 Create a System DSN ... 323
 9.3.2 Join Tables, and Create a Thematic Map .. 325

9.4 Lesson: Using Constraints ... 330
 9.4.1 Working with Constraints .. 334

9.5 Lesson: Bulk Copy Between Feature Sources ... 338
 9.5.1 Exporting an SHP to an SDF .. 342
 9.5.2 Bulk Copy from an SDF to an SHP ... 343

Chapter 10 Using Attached Source Drawings and Queries 347

10.1 Lesson: Managing Source Drawings ... 348
 10.1.1 Managing Source Drawings .. 354

10.2 Lesson: Executing Location and Property Queries .. 359
 10.2.1 Executing Location Queries .. 366
 10.2.2 Executing Property Queries .. 372
 10.2.3 Executing Compound Queries ... 374

10.3 Lesson: Executing Data Queries ... 378
 10.3.1 Query by Pipe Size from Object Data .. 381
10.4 Lesson: Altering Properties During Queries ... 386
 10.4.1 Execute a Query with a Property Alteration ... 389
10.5 Lesson: Using Save-Back .. 392
 10.5.1 Execute Save-Back to Save Changes to an Attached Source Drawing 398
10.6 Lesson: Working with Multiple Coordinate Systems .. 401
 10.6.1 Working with Source Drawings in Multiple Coordinate Systems 404

Chapter 11 Working with Topologies ... 407
 11.1 Lesson: Creating Network Topologies ... 408
 11.1.1 Creating a Network Topology ... 413
 11.2 Lesson: Creating Polygon Topologies ... 417
 11.2.1 Creating a Polygon Topology ... 421
 11.3 Lesson: Performing Topology Analysis ... 427
 11.3.1 Network Analysis ... 431
 11.3.2 Performing a Buffer Analysis ... 433
 11.3.3 Performing an Overlay Analysis ... 436

Chapter 12 Map Output .. 441
 12.1 Lesson: Adding Dynamic Legends, Scale Bars and North Arrows 442
 12.1.1 Adding a Dynamic Legend to a Layout ... 446
 12.1.2 Adding a Dynamic Scale Bar to a Layout .. 449
 12.1.3 Adding a Dynamic North Arrow to a Layout ... 452
 12.1.4 Adding a Coordinate System Grid to a Layout ... 454
 12.2 Lesson: Creating Map Books ... 456
 12.2.1 Creating a Map Book .. 460
 12.2.2 Navigating Through the Map Book .. 464
 12.2.3 Publishing the Map Book .. 465
Chapter: Importing and Exporting

5.1 Lesson: Importing GIS Data

Introduction
Importing GIS file formats into Civil 3D opens the door to a tremendous amount of data. Much of this data is free and can be integrated into your mapping system. In this lesson, you begin by learning the formats and types of data that can be imported into Civil 3D, and guidelines around integrating other mapping data into your mapping system. You then import an ArcView SHP file into Civil 3D.

Key Concepts
Concepts and key terms covered in this lesson are:

- Import
 - Geometry
 - Attributes
 - Coordinate Systems
- Import dialog box

Objectives
After completing this lesson, you will be able to:

- Describe what Map Import is.
- List the components that can be imported, and how Civil 3D interprets incoming data.
- Identify and explain the tools used to import GIS data.
- Import street segments with Object Data.
- Import zoning polygons with an external data source.
About Importing GIS Data into Civil 3D
GIS Data generally contains three types of data: geometry, attributes, and the coordinate system it was created in. Using the map import tools, you can define how Civil 3D interprets and imports all three types of data.

The Map Import commands are used to convert other GIS formats into AutoCAD objects with attributes. These new AutoCAD objects are saved in the drawing file, with no link to the original GIS source.

Civil 3D can also connect to data as a feature source and work with these files in their native format. This functionality is covered in another lesson.

Geometry
All GIS formats are different. Civil 3D imports the data in such a way as to represent the native format as closely as possible. An example of this functionality is when importing line data from an ArcView shape file, any segments in the incoming file that have vertexes are imported as polylines, while those that are simple lines with a start and endpoint are imported as lines.

Points can be imported as either AutoCAD points, or blocks that are defined in the drawing.

Attributes
Attributes that are associated with incoming data can be mapped to Object Data, or can be imported to an attached data source, such as a Microsoft Access database table, and linked to the objects at the same time.

Coordinate Systems
If the incoming file has coordinate system information associated with it, either within the file itself, or a companion file, Civil 3D will read this information and convert the coordinates to the target drawing file. If there is no coordinate system information in the incoming file, you can assign a coordinate system to it during the import procedure.

Spatial Filters
Some GIS applications can manage larger data sets than can be reasonably managed within Civil 3D. Spatial filters enable you to limit the amount of data that you import based on a location in the current map.

Guidelines for Preparing for Map Import
You can start a new drawing and simply import data. In most cases, you want to prepare a target drawing with layers, Object Data tables, or attached data sources that will receive the incoming data. This is especially true if your office has mapping standards that must be adhered to, or if you are importing into an existing drawing that already has all the layers, Object Data tables, or attached data sources present.

Another important point when preparing for an import is to have some familiarity with the incoming data. This may come from metadata or documentation of some kind. The best way to qualify the incoming data is to use the native application to review. However, this is not always possible, in which case the import process might be a trial and error process until you can make the correct settings for the final import.
If you perform the same type of import regularly, you can save a profile of the settings and load the profile each time you perform an import. You can also create a drawing template that has all of the definitions such as Object Data tables, layers, blocks and so on.

The Import Interface
Once the target file is prepared, and the incoming data is qualified, the entire import procedure is performed in a single interface with various dialog boxes for the settings.
Exercises: Import Data from Other GIS Formats
In these exercises you will import street centerlines that were sent to you as an E00 file. An ArcInfo coverage may either be stored as a directory of related files, or exported into a single E00 export file from ArcInfo or ArcGIS, as in this exercise.

Then you will, import parcel polygons from an ArcView Shapefile and convert their coordinate system.

Finally, you will create centroids and move the attached data from each polyline to the corresponding centroid. This is the first step in the process of cleaning the geometry, an important process whenever base map data is imported.

The use of the import command is very similar for all the different types of supported GIS data file formats. However, there are some differences depending on the type of geometry that is contained in those files (points, lines, or polygons).

You do the following:

- Import streets from an E00 file.
- Import parcels from an ArcView shape file and convert its coordinate system.
- Create centroids for the parcel polygons.

5.1.1 Importing an ArcInfo Coverage

For these exercises you should be in the Planning and Analysis workspace

In this exercise you will import street centerlines that were sent to you as an E00 file. An ArcInfo coverage may either be stored as a directory of related files, or exported into a single E00 export file from ArcInfo or ArcGIS, as in this exercise.

1. Press Ctrl + N and select the template map2d.dwt from the folder Map Book Templates, to start a new, blank drawing.

2. Select Ribbon: Insert ⇒ Import ⇒ Map Import.
The Import Location dialog box opens.

3. Set the file type to ESRI ArcInfo Export (E00).

4. Browse to the Chapter 05 folder, select streets.e00, and click <<OK>>.

In the Import dialog box you can configure the Layer, Coordinate Conversion, and Data options that you wish to use to import the information into AutoCAD.

5. Ensure that the STREETS_arc Input Layer is selected.

6. Click on the Drawing Layer field in the STREETS_arc row, to activate the More button <<…>>.

7. Click the More button <<…>> to launch the Layer Mapping dialog box.
Here you can choose to import the drawing objects onto an existing layer, create a new layer, or select a column of data from the file that you are importing to determine the layer names. This last option will allow you to do some basic thematic mapping during the import of the objects. For example, if you were importing parcel data and that data set had a column for zoning. You could have the import command create a new layer for each zoning type and place each parcel on the appropriate layer for its zoning designation. (See Additional Exercises at the end of this chapter for more information).

In this exercise, you will place all of the streets on one new layer.

8. Choose the Create on new layer option to activate the text box.

9. Enter "Streets" for the layer name.

10. Click <<OK>> to return to the Import dialog box.

11. Click on the Data field in the STREETS_arc row to activate the More button <<…>>.

12. Click the More button <<…>> to launch the Attribute Data dialog box.
Here you specify what attribute data to import and where to store it. You can enter the desired name for the Object Data Table and select the desired fields to import. This is the step that allows you to bring the intelligence of the GIS file along with the geometry into AutoCAD. By creating the object data table and populating it with the information provided in the coverage you will be able to click on a street and find the street name, type, speed limit, and any other information that was added by the GIS department. This will also allow you to edit the geometry and data from the GIS file in AutoCAD and then export it back to any of the supported GIS formats without losing any of the attached data. If you leave the Data option set to None or Do not import attribute data, then you will only import the geometry of the file and you will lose all of the attached information.

13. Choose the Create object data option to activate the Object Data section.

14. Change the Object Data table name to Streets.

15. Click <<Select Fields>>.

Here you specify which fields to import into the Object Data table.

16. Deselect all Input Fields except NAME_FULL, TYPE, SPEED, OWNER, PAVED, and FCLASS.

You only need to import the fields that you want to have available. So if there is extraneous data that you don't need, you can skip it and keep the file size smaller.

It is also important to understand that many GIS programs store geometric data, like length and area, in data tables, while in AutoCAD the geometry is a physical property of the object. In this example, if you were to import the length field, it would be a static value in the object data table and would not update if the length of the line is altered.

17. Click <<OK>> to dismiss the Object Data Mapping dialog box.

18. Click <<OK>> to dismiss the Attribute Data dialog box.

19. Click <<OK>> in the Import dialog box to import the file.

The streets are imported into the drawing as polylines, with the GIS data attached as Object Data.

20. Once the 287 objects are imported, zoom to Extents.

22. Pick a line segment anywhere in the drawing.

Here, you can view the object data associated with the line segment you picked. You can also change the value of any field in this object’s data, or even add a record to a new or existing object. It is also possible to view and edit object data as an AutoCAD property.

23. View the object data associated with a few other line segments.

24. Click <<Cancel>> once you are through viewing the fields, to avoid saving any inadvertent changes.

25. Save the drawing as Streets in the Chapter 05 folder.
5.1.2 Importing Polygons from an ArcView Shapefile

For this exercise you should be in the Planning and Analysis workspace.

In this exercise you import parcel polygons from an ArcView Shapefile. This Shapefile geometry resides in a different coordinate system, and will be converted during the import process.

1. Open City Taxlots OD.dwg from the Chapter 05 folder.

This drawing contains the city taxlots file that you worked with in previous chapters, with the Taxlot attribute data as object data, attached to the centroids.

The county taxlots you are about to import are in a different coordinate system, which Civil 3D will convert during the import process. The first step is to assign the correct coordinate system to the base map.

2. Select Ribbon: Map Setup ⇒ Coord System ⇒ Assign.

3. Click <<Select Coordinate System>> in the Current Drawing section, to open the Coordinate System - Assign dialog box.
4. From the **Category** list, select **USA, Oregon**.

5. From the list, select **OR-S NAD27 Oregon State Planes (Polyconic), South Zone, US Foot**.

Notice the column of codes on the left, and that the code for the selected coordinate system is **OR-S**.

Once you become familiar with commonly used coordinate systems in your region, you can learn the short codes and simply enter them in the **Coordinate System - Assign** dialog box.

6. Click **<<Assign>>** to assign the **Global Coordinate System**.

The drawing is now identified with the **NAD 27 State Plane** coordinate system - no conversion has occurred, you have simply assigned that coordinate system to this drawing. The **Ribbon** now displays the **Geolocation** tab.

Next, you will import the county GIS data, which is in a different coordinate system, and **Civil 3D** will convert it to this coordinate system.

7. Select **Ribbon: Insert ⇒ Import ⇒ Map Import**.

The **Import Location** dialog box opens.

8. Set the file type to **ESRI Shapefile (*.shp)**.

9. Navigate to the **Chapter 05** folder and select **TL_C_83**.

10. Click **<<OK>>** to launch the **Import** dialog box.
Here you specify all import parameters.

11. Click on the Drawing Layer field in the TL_C_83 row to activate the More button <<...>>.

12. Click the More button <<...>> to open the Layer Mapping dialog box.

13. Choose the Create on new layer option to activate the text field.

14. Enter Taxlot_County for the new layer name.

15. Click <<OK>> to return to the Import dialog box.
Notice that the Current drawing coordinate system (the base map into which you are now importing this ESRI Shapefile) is in NAD27, which you set at the beginning of this exercise.

Also notice that the Input Coordinate System is showing OR83-SF, which is the code for NAD83 Oregon State Planes (Polyconic), South Zone, US Foot.

Civil 3D is getting this information from the PRJ file, that accompanies the .SHP file. This file contains the coordinate system information. When you acquire shapefiles from others, always ask for coordinate system information. If there is not an accompanying PRJ file, but the coordinate system is known, you could use the More button <<…>> in the Input Coordinates field to select it manually, using the Coordinate System Library.

16. Click on the Data field to activate the More button <<…>>.

17. Click the More button <<…>> to open the Attribute Data dialog box.

18. Choose the Create object data option to activate the External Database section.

19. Select Parcels from the Object data table list.

The object data table exists in the City Taxlots OD drawing.

Civil 3D will add the new records to the existing object data table during the import process.

20. Click <<OK>> to return to the Import dialog box.
21. **Enable** the **Import polygons as closed polylines** option.

This will create each taxlot as a closed polyline, as opposed to a polygon object.

22. Click **<<OK>>** to import the file.

Civil 3D will process 396 objects and import them into the current drawing, and will append 396 corresponding records to the attached database.

23. Zoom to Extents. Your drawing should look like this:

The county parcels have been imported and converted to the coordinate system of the city taxlots drawing.

24. Save the drawing as **Regional Taxlots.dwg** in the **Chapter 05 folder**.
5.1.3 Creating Centroids

For this exercise you should be in the Planning and Analysis workspace.

In this exercise you will first create centroids and move the attached data from each polyline to the corresponding centroid. This is the first step in the process of cleaning the geometry, an important process whenever base map data is imported.

1. Continue working in the Regional Taxlots.dwg that you created in the last exercise.

2. Freeze the Taxlots and Centroid layers to isolate the Taxlot County layer.

3. Select Ribbon: Create ⇒ Drawing Objects ⇒ Create Centroids.

The Create Centroids dialog box opens.

4. In the Create Centroids in section, choose Selected only:

5. Click the select objects button.

This temporarily closes the dialog box so you can pick the objects.

6. Pick all the polygons with a crossing window and press Enter.
7. Click the New Layer button to make the layer Centroid_County on which to create the centroids.

8. Confirm that ACAD_POINT is selected in the Create using field.

9. Click <<OK>> to create a centroid for each closed polygon.

This creates a point at the geometric center of each polygon and moves the data from the polyline to the new centroid.

10. Pick one of the new centroids, then right-click and select ⇒ Properties.

11. In the Properties palette, scroll to the bottom and notice the attribute data from the SHP file is now attached to the tax lot centroids.

12. Save the Drawing.

Lesson Review

In these exercises you imported street centerlines that were sent to you as an E00 file. An ArcInfo coverage may either be stored as a directory of related files, or exported into a single E00 export file from ArcInfo or ArcGIS, as in this exercise.

Then you imported parcel polygons from an ArcView Shapefile and converted their coordinate system.

Finally, you created centroids and moved the attached data from each polyline to the corresponding centroid. This is the first step in the process of cleaning the geometry, an important process whenever base map data is imported.
7.3 Lesson: Connecting to Raster and Raster Surfaces

Introduction
Connecting to raster data as a feature source is similar to inserting images using Image Insert. In each case, the file is only referenced and not part of the drawing itself. In this lesson, you also learn the differences between these two methods and the advantages of using the feature source connection. You also learn about the tools that are used to connect to a raster image, and then connect to a raster image.

Connecting to raster surfaces is similar to connecting to raster images. The main difference is that raster surfaces contain elevation data associated with each pixel. Civil 3D uses this method for simple surface analysis and visualization as part of the feature source. In this lesson, you learn the basic concepts of raster surfaces, the types of files that you can access, and how raster surfaces can be used as part of your mapping system. You then connect to a digital elevation model, and add it to your map.

Key Concepts
Concepts and key terms covered in this lesson are:
- Raster feature sources
- Raster surfaces
- Viewing raster surfaces in 3D
- Draping raster and vectors over surfaces

Objectives
After completing this lesson, you will be able to:
- Describe what a raster feature source is.
- List the types of raster formats that can be accessed.
- Explain how raster surfaces can be used.
- Connect to an ortho photo.
- Connect to a raster surface.
- Drap vectors and raster over a raster surface.
Raster Feature Source Concepts

You can use raster data in Civil 3D through the Map Image Insert command and by connecting to raster as a feature source. There are some very powerful reasons to use a feature source connection rather than inserting raster:

- Performance
- File formats
- Coordinate conversion

Performance

The performance of raster as a feature source is much better than that of raster inserted in a drawing. In some cases this performance enables access to raster that otherwise cannot be used because of file size.

File Formats

Connecting to raster as a feature source opens a larger selection of geospatial-based file formats to work with. In addition to the formats that are offered directly in standard Civil 3D, the fact that the feature data objects (FDO) technology is open source enables developers to write additional FDO providers to access even more file formats.

The following illustration shows the file formats available in the Map Image Insert command. While it offers a wide variety of file formats to select from, when considering the geospatial specific formats, it is fairly limited.
The following illustration shows the file formats available when connecting to raster as a feature source. The formats available through this method are especially useful for geospatial applications.

<table>
<thead>
<tr>
<th>Raster Type</th>
<th>Formats</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raster-based surfaces</td>
<td>DEM (Digital Elevation Model), ESRI Grid, or Digital Terrain Elevation Data (OTED)</td>
</tr>
<tr>
<td>2D raster</td>
<td>JPEG and JPEG2K (Joint Photographic Experts Group), PNG (Portable Network Graphic), MrSID (Multi-Resolution Seamless Image Database), TIFF (Tagged Image File Format), ECW (Enhanced Compressed Wavelet)</td>
</tr>
<tr>
<td>WMS raster</td>
<td>Maps on a server</td>
</tr>
<tr>
<td>Other raster formats</td>
<td>BMP, CALS I, EQW, FLIC, GeoSPOT, IG4, IGS, IKONOS, JFIF, LANDSAT FAST, L7A, NITF, PCX, PICT, Quickbird TIFF, RLC 1 and 2, TARGA</td>
</tr>
</tbody>
</table>

Coordinate Conversion
Connecting to raster as a feature source enables the coordinates of the raster to be converted to the coordinates of the current drawing. This is a very important distinction between connecting and inserting raster. When using Map raster insert, whatever the coordinates of the raster are determines the coordinates of your map. This is very limiting when compared to the coordinate conversion available using a raster feature source connection.

Raster Surface Concepts
When working with raster as feature sources, the process and procedures to connect and add both standard raster and raster surfaces are the same.

Both types of raster are composed of pixels. In the case of raster surfaces, each pixel has a Z value rather than a value such as grey scale or color that produces a “picture”. Civil 3D can interpret the Z values in a raster surface, and produce three dimensional views and analysis.
Raster Feature Layers

When a raster is connected to, and added to a map, the management of the feature layer is the same as that of vector based feature layers.

Working with Raster Surfaces

There are several tools available to take advantage of the elevation data that is inherent in a raster surface. These tools include creating contours, slope, aspect, and elevation analysis, draping, and assigning exaggeration values to the elevations. In this lesson, you work with draping and exaggeration.

Draping

Draping refers to vector and raster objects which adopt the three dimensional characteristics of the underlying surface. By default, when a raster surface feature layer is present in a drawing, all other feature layers, both vector and raster drape over the raster surface depending on the draw order of the feature layers.

AutoCAD objects do not drape over raster surfaces.
Exaggeration
Exaggeration can be applied to raster surfaces to create a more impactful representation of the terrain when needed.

In the following illustrations, the image on the left is a raster viewed in 3D with no exaggeration. The image on the right is the same raster surface with an exaggeration value of 3x.

Exaggeration should be used sparingly. It often dramatically misrepresents the map.

Exercises: Connecting to Raster and Raster Surfaces
In these exercises, you start in a drawing that has a parcel feature layer connected. You connect to a raster image of an ortho photo of the area of interest. You then connect to a raster surface, change the draw order, and view the map in 3D.

You do the following:

- Connect to a raster image and add it to the map.
- Change the draw order to view the parcels on top of the raster.
- Connect to and add a raster surface to the map.
- Set the draw order to drape the parcels and ortho photo over the surface.
7.3.1 Connecting to an Aerial Photo

For this exercise you should be in the Planning and Analysis workspace.

1. Open the drawing Connect to Raster.dwg from the Chapter 07 folder.

In the first series of steps, you connect to the raster image and add it to the map.

2. If the Task Pane is not visible, at the command line enter:
 Command: MAPWSPACE.

3. At the command line, enter ON to display the Task Pane, which includes the Display Manager.

4. In the Display Manager, confirm that the Groups button is selected.

5. In the Display Manager, click the Data button, and then select ⇒ Connect to Data….

The Data Connect palette opens. Here you can select from many different data providers or sources. In this exercise you will be connecting to a raster image file.

6. From the Data Connections by Provider list, select Add Raster Image or Surface Connection.

7. Change the Connection name: to Ortho.

8. Click the file button and browse to: C:\A Practical Guide\GIS in Civil 3D 2019\Chapter 07, and select Aerial.tif.
9. Click <<Connect>>.

![Data Connect palette]

10. Click <<Add to Map>>.

11. Close the Data Connect palette.

Notice the feature layer *Aerial* now appears in the Display Manager. A layer in the Display Manager is different than an AutoCAD layer; it is the name of a data source and where you manage its properties.

Notice the aerial photo is on top of the parcels.

12. In the Display Manager, select the Draw Order button.

The list of feature layers is displayed in the current draw order. The order these are listed in matches the feature layers in the drawing.

13. Drag the Parcels feature layer above the Aerial layer.

The first time you change the sequence of the Display Map Draw Order list in a drawing, an alert is displayed, informing you that the Draw Order list will now control the visual display of feature layers.

![Alert]

The Draw Order view will now control layer position in the canvas. What do you want to do?

- Continue action and allow Draw Order to control layer position from now on
- Cancel action to allow Groups view to continue controlling layer position in canvas.
14. Click *Continue action* and allow Draw Order to control layer position from now on.

15. Zoom into the map to view the image with the parcels overlaid.

16. Save the drawing for use in the next exercise.

7.3.2 Connecting to a Raster Surface

In this exercise you connect to and add to the map an elevation enabled raster, or raster surface. Once the surface raster is added to the map, you change the draw order, and view the map in 3D. Any feature layer that is on top of the surface will automatically drapes over the surface.

1. Continue working in *Connect to Raster.dwg* from the previous exercise.

If you did not complete the previous exercise you can open the drawing *Connect to Surface.dwg*.

2. Connect to a Raster Surface. Repeat Steps 5-11 from the previous exercise using the following information:

 - For the Connection Name enter *Elevation*
 - Connect to the file *Existing Ground.dem* in the *Chapter 07* folder

3. In the *Display Manager*, select *Draw Order*.

The list of feature layers is displayed in the current draw order. The order these are listed in matches the feature layers in the drawing.

4. Drag the feature layers to match the following order:

 - Parcels
 - Aerial
 - Existing Ground

To view the Parcels and Aerial features draped over the Existing Ground DEM feature, you need to switch the drawing editor from 2D to 3D views. The tools to switch views reside on the *Map Status Bar*. In the standard, out-of-the-box installation of Civil 3D, this status bar is not displayed by default. The display of the *Map Status Bar* is controlled by a system variable.

5. Enter *MAPSTATUSBAR* on the *Command Line*, and select `<Show>`.

The *Drawing Status Bar* now shows additional tools for some *AutoCAD Map 3D* functions, such as 2D / 3D Viewing, Vertical Exaggeration, Coordinate Systems and View Scale.
6. In the Drawing Status Bar, click the 3D icon. The drawing is displayed in 3D.

7. In the Status bar, for Vertical Exaggeration, select 2x.

Note: It might take a few moments to optimize the layer.

8. Zoom into the drawing to view how the raster and parcels are draped over the surface raster.

9. Experiment with various Vertical Exaggeration values and 3D viewing angles.

10. In the Display Manager, turn the Aerial image off, and notice how the vector data in the Parcels layer are draped over the surface.

NOTE: Be careful when applying Vertical Exaggeration, and use it sparingly. While it can help visualize terrain in relatively flat areas, it can dramatically misrepresent actual conditions.

Lesson Review
In these exercises you integrated three different sources of data. Vector based parcels, an ortho photo, and a surface. Together, these sources of data were combined to view how the parcels and the image drape over the existing ground terrain.
Index

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3D Modeling Workspace</td>
<td>8</td>
</tr>
<tr>
<td>3D Navigation</td>
<td>278</td>
</tr>
<tr>
<td>Add Data to a Map</td>
<td>216</td>
</tr>
<tr>
<td>Adding New Features</td>
<td>312</td>
</tr>
<tr>
<td>Altering Properties</td>
<td>386</td>
</tr>
<tr>
<td>Anchors</td>
<td>36</td>
</tr>
<tr>
<td>Angle Data</td>
<td>25</td>
</tr>
<tr>
<td>Annotation Blocks</td>
<td>117</td>
</tr>
<tr>
<td>Annotation Template</td>
<td>117</td>
</tr>
<tr>
<td>Attach Object Data</td>
<td>59, 66, 69</td>
</tr>
<tr>
<td>Attribute Data</td>
<td>52, 53</td>
</tr>
<tr>
<td>AutoCAD Attach</td>
<td>241</td>
</tr>
<tr>
<td>AutoCAD Options</td>
<td>9</td>
</tr>
<tr>
<td>AutoCommit</td>
<td>90</td>
</tr>
<tr>
<td>Automatic Check In</td>
<td>310</td>
</tr>
<tr>
<td>Automatic Checkout</td>
<td>310</td>
</tr>
<tr>
<td>AutoSave</td>
<td>9</td>
</tr>
<tr>
<td>Best Route</td>
<td>429</td>
</tr>
<tr>
<td>Bitonal</td>
<td>239</td>
</tr>
<tr>
<td>Block Attributes</td>
<td>55</td>
</tr>
<tr>
<td>Bulk Copy</td>
<td>338</td>
</tr>
<tr>
<td>Cancelling Checkout</td>
<td>311</td>
</tr>
<tr>
<td>Capture Area</td>
<td>251</td>
</tr>
<tr>
<td>Centroid</td>
<td>418</td>
</tr>
<tr>
<td>Check-In/Checkout</td>
<td>310</td>
</tr>
<tr>
<td>Civil 3D Workspace</td>
<td>8</td>
</tr>
<tr>
<td>Classifying Existing Objects</td>
<td>153</td>
</tr>
<tr>
<td>Clustered Nodes</td>
<td>35, 412</td>
</tr>
<tr>
<td>COGO Inquiry</td>
<td>24</td>
</tr>
<tr>
<td>Command Line</td>
<td>9</td>
</tr>
<tr>
<td>Compound Queries</td>
<td>364</td>
</tr>
<tr>
<td>Connecting to ODBC</td>
<td>229</td>
</tr>
<tr>
<td>Connecting to Raster</td>
<td>257</td>
</tr>
<tr>
<td>Constraints</td>
<td>330</td>
</tr>
<tr>
<td>Contextual Ribbons</td>
<td>5</td>
</tr>
<tr>
<td>Contours</td>
<td>281</td>
</tr>
<tr>
<td>Convert Coordinate Systems</td>
<td>403</td>
</tr>
<tr>
<td>Coordinate Conversion</td>
<td>255</td>
</tr>
<tr>
<td>Coordinate Geometry</td>
<td>24</td>
</tr>
<tr>
<td>Coordinate System</td>
<td>17, 165, 214, 231, 401</td>
</tr>
<tr>
<td>Coordinate System Grid</td>
<td>454</td>
</tr>
<tr>
<td>Coordinate Tracker</td>
<td>18</td>
</tr>
<tr>
<td>Correlation Files</td>
<td>240</td>
</tr>
<tr>
<td>Create scale ranges</td>
<td>289</td>
</tr>
<tr>
<td>Creating New Classified Objects</td>
<td>158</td>
</tr>
<tr>
<td>Creating New Features</td>
<td>311</td>
</tr>
<tr>
<td>Crossing Objects</td>
<td>35, 412</td>
</tr>
<tr>
<td>Current Drawings</td>
<td>349</td>
</tr>
<tr>
<td>Data Panel</td>
<td>397</td>
</tr>
<tr>
<td>Data Queries</td>
<td>378</td>
</tr>
<tr>
<td>Data Source</td>
<td>85</td>
</tr>
<tr>
<td>Data Source Name</td>
<td>231</td>
</tr>
<tr>
<td>Data Table</td>
<td>223</td>
</tr>
<tr>
<td>Data Table Tools</td>
<td>224</td>
</tr>
<tr>
<td>Data View</td>
<td>89</td>
</tr>
<tr>
<td>Datum</td>
<td>15</td>
</tr>
<tr>
<td>Define Object Data</td>
<td>59</td>
</tr>
<tr>
<td>Digital Elevation Model</td>
<td>253, 277</td>
</tr>
<tr>
<td>Display Manager</td>
<td>6</td>
</tr>
<tr>
<td>Drafting & Annotation Workspace</td>
<td>8</td>
</tr>
<tr>
<td>Drafting Settings</td>
<td>9</td>
</tr>
<tr>
<td>Draping</td>
<td>256, 280</td>
</tr>
<tr>
<td>Draw Order</td>
<td>225, 246</td>
</tr>
<tr>
<td>Drawing Cleanup</td>
<td>411</td>
</tr>
<tr>
<td>Drawing Locks</td>
<td>353</td>
</tr>
<tr>
<td>Drive Aliases</td>
<td>350</td>
</tr>
<tr>
<td>Duplicate Objects</td>
<td>35</td>
</tr>
<tr>
<td>Dynamic Annotation</td>
<td>115</td>
</tr>
<tr>
<td>Edit Feature Attributes</td>
<td>309</td>
</tr>
<tr>
<td>Edit Feature Geometry</td>
<td>309</td>
</tr>
<tr>
<td>Edit Object Data</td>
<td>59, 75, 76, 78</td>
</tr>
<tr>
<td>Editing Attributes</td>
<td>311</td>
</tr>
<tr>
<td>Editing Existing Features</td>
<td>312</td>
</tr>
<tr>
<td>Editing Object Data Tables</td>
<td>79</td>
</tr>
<tr>
<td>Editing Transaction Model</td>
<td>393</td>
</tr>
<tr>
<td>Error Markers</td>
<td>421</td>
</tr>
<tr>
<td>Export file types</td>
<td>180</td>
</tr>
<tr>
<td>Export Process</td>
<td>182</td>
</tr>
<tr>
<td>Exporting</td>
<td>179</td>
</tr>
<tr>
<td>Exporting Civil 3D Objects</td>
<td>204</td>
</tr>
<tr>
<td>Expression Builder</td>
<td>303, 304</td>
</tr>
<tr>
<td>External Data Sources</td>
<td>53</td>
</tr>
<tr>
<td>External Databases</td>
<td>84</td>
</tr>
<tr>
<td>Feature Class</td>
<td>214</td>
</tr>
<tr>
<td>Feature Filters</td>
<td>302</td>
</tr>
<tr>
<td>Feature Joins</td>
<td>319</td>
</tr>
<tr>
<td>Feature Layer</td>
<td>215, 222</td>
</tr>
<tr>
<td>Feature Layer Selectivity</td>
<td>225</td>
</tr>
<tr>
<td>Feature Queries</td>
<td>302</td>
</tr>
<tr>
<td>Feature Queries</td>
<td>302</td>
</tr>
<tr>
<td>Feature Source</td>
<td>208, 211</td>
</tr>
<tr>
<td>Feature Source Connect</td>
<td>212, 242</td>
</tr>
<tr>
<td>Feature Styles</td>
<td>264</td>
</tr>
<tr>
<td>Filter to Select</td>
<td>305</td>
</tr>
<tr>
<td>Flood Trace</td>
<td>429</td>
</tr>
<tr>
<td>Generating Links</td>
<td>86, 98, 99, 101</td>
</tr>
<tr>
<td>GIS Contours</td>
<td>190</td>
</tr>
<tr>
<td>Global Coordinate Systems</td>
<td>15</td>
</tr>
<tr>
<td>Grey Scale</td>
<td>240</td>
</tr>
<tr>
<td>Hillshading</td>
<td>279</td>
</tr>
<tr>
<td>Image Behavior</td>
<td>246</td>
</tr>
<tr>
<td>Image Correlation</td>
<td>242</td>
</tr>
<tr>
<td>Image Frames</td>
<td>246</td>
</tr>
<tr>
<td>Image Insert</td>
<td>242</td>
</tr>
<tr>
<td>Import Attributes</td>
<td>165</td>
</tr>
<tr>
<td>Import Coordinate Systems</td>
<td>165</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Import Geometry</th>
<th>165</th>
<th>Raster Feature Source</th>
<th>254</th>
</tr>
</thead>
<tbody>
<tr>
<td>Import Interface</td>
<td>166</td>
<td>Raster Metadata</td>
<td>241</td>
</tr>
<tr>
<td>Import Spatial Filters</td>
<td>165</td>
<td>Raster Surface</td>
<td>240, 255</td>
</tr>
<tr>
<td>Inserting Dynamic Annotation</td>
<td>122</td>
<td>Raster Surface Styles</td>
<td>278</td>
</tr>
<tr>
<td>Joins</td>
<td>318</td>
<td>Raster Surface Themes</td>
<td>280</td>
</tr>
<tr>
<td>Layout Elements</td>
<td>443</td>
<td>Raster Surfaces</td>
<td>253</td>
</tr>
<tr>
<td>Legend</td>
<td>443</td>
<td>reference grid</td>
<td>445</td>
</tr>
<tr>
<td>Line Feature Styles</td>
<td>268</td>
<td>Reference Management</td>
<td>246</td>
</tr>
<tr>
<td>Link Template</td>
<td>85, 98, 99, 100</td>
<td>Reference System</td>
<td>445</td>
</tr>
<tr>
<td>Linking External Databases</td>
<td>85</td>
<td>Refresh Annotation</td>
<td>118</td>
</tr>
<tr>
<td>Links</td>
<td>409, 418</td>
<td>Relational Data Base Management Systems</td>
<td>211</td>
</tr>
<tr>
<td>Location Queries</td>
<td>359, 362</td>
<td>Ribbon</td>
<td>4, 223</td>
</tr>
<tr>
<td>Manually Link</td>
<td>101</td>
<td>Save-Back</td>
<td>392</td>
</tr>
<tr>
<td>Map Book Dialog</td>
<td>459</td>
<td>Save-Back Options</td>
<td>395</td>
</tr>
<tr>
<td>Map Book Template</td>
<td>457</td>
<td>Saved Queries</td>
<td>365</td>
</tr>
<tr>
<td>Map Books</td>
<td>441, 442</td>
<td>Scale Bar</td>
<td>444</td>
</tr>
<tr>
<td>Map Explorer</td>
<td>6, 332</td>
<td>Scale Dependent Styles</td>
<td>285</td>
</tr>
<tr>
<td>Map Status Bar</td>
<td>260</td>
<td>Scale Ranges</td>
<td>266</td>
</tr>
<tr>
<td>Network Analysis</td>
<td>428</td>
<td>Schema</td>
<td>339</td>
</tr>
<tr>
<td>Network Topologies</td>
<td>408</td>
<td>Schema Editor</td>
<td>332</td>
</tr>
<tr>
<td>Nodes</td>
<td>409, 418</td>
<td>Shortest Path</td>
<td>428</td>
</tr>
<tr>
<td>North Arrow</td>
<td>444</td>
<td>Source Drawings</td>
<td>348</td>
</tr>
<tr>
<td>Object Class Objects</td>
<td>159</td>
<td>SQL Queries</td>
<td>379</td>
</tr>
<tr>
<td>Object Classes</td>
<td>154</td>
<td>Style Editor</td>
<td>264</td>
</tr>
<tr>
<td>Object Classification</td>
<td>140, 141, 158</td>
<td>Style Editor Palette</td>
<td>266</td>
</tr>
<tr>
<td>Object Classification Definition File</td>
<td>142</td>
<td>Style Scale Ranges</td>
<td>264</td>
</tr>
<tr>
<td>Object Data</td>
<td>54, 57, 67, 165, 379</td>
<td>Styles</td>
<td>266</td>
</tr>
<tr>
<td>Objects</td>
<td>209</td>
<td>Stylize Raster Surfaces</td>
<td>277</td>
</tr>
<tr>
<td>ODBC</td>
<td>229</td>
<td>Stylizing features</td>
<td>264</td>
</tr>
<tr>
<td>Online Map</td>
<td>250</td>
<td>Surface</td>
<td>190</td>
</tr>
<tr>
<td>Open Data Base Connectivity</td>
<td>230</td>
<td>Surface Exaggeration</td>
<td>257, 278</td>
</tr>
<tr>
<td>Pipe Network</td>
<td>190</td>
<td>Task Pane</td>
<td>5, 224, 352</td>
</tr>
<tr>
<td>Planning & Analysis Workspace</td>
<td>8</td>
<td>Theme Feature Labels</td>
<td>295</td>
</tr>
<tr>
<td>Point Feature Styles</td>
<td>267</td>
<td>Theme Legend Labels</td>
<td>295</td>
</tr>
<tr>
<td>Polygon Feature Styles</td>
<td>268</td>
<td>Theme Ramps</td>
<td>295</td>
</tr>
<tr>
<td>Polygon Overlay</td>
<td>430</td>
<td>Themes</td>
<td>292, 387</td>
</tr>
<tr>
<td>Polygon Topologies</td>
<td>417</td>
<td>Tolerance</td>
<td>36</td>
</tr>
<tr>
<td>Projection</td>
<td>15</td>
<td>Topology Analysis</td>
<td>427</td>
</tr>
<tr>
<td>Properties Palette</td>
<td>76</td>
<td>Topology Object Data</td>
<td>410</td>
</tr>
<tr>
<td>Property Alteration</td>
<td>388</td>
<td>UDL file</td>
<td>85</td>
</tr>
<tr>
<td>Property Queries</td>
<td>359, 363</td>
<td>Update Annotation</td>
<td>118</td>
</tr>
<tr>
<td>Pseudo Nodes</td>
<td>35</td>
<td>User Interface</td>
<td>1</td>
</tr>
<tr>
<td>Quick View</td>
<td>351</td>
<td>Validating Standards</td>
<td>152, 330, 333, 387</td>
</tr>
<tr>
<td>Ranges and Styles</td>
<td>287</td>
<td>Vector Objects</td>
<td>239</td>
</tr>
<tr>
<td>Raster</td>
<td>238, 239, 253</td>
<td>Viewing Linked Data</td>
<td>102</td>
</tr>
<tr>
<td>Raster Feature Layers</td>
<td>256</td>
<td>Workspaces</td>
<td>8</td>
</tr>
</tbody>
</table>